2(4^2x+2)=128

Simple and best practice solution for 2(4^2x+2)=128 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(4^2x+2)=128 equation:



2(4^2x+2)=128
We move all terms to the left:
2(4^2x+2)-(128)=0
We multiply parentheses
8x^2+4-128=0
We add all the numbers together, and all the variables
8x^2-124=0
a = 8; b = 0; c = -124;
Δ = b2-4ac
Δ = 02-4·8·(-124)
Δ = 3968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3968}=\sqrt{64*62}=\sqrt{64}*\sqrt{62}=8\sqrt{62}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{62}}{2*8}=\frac{0-8\sqrt{62}}{16} =-\frac{8\sqrt{62}}{16} =-\frac{\sqrt{62}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{62}}{2*8}=\frac{0+8\sqrt{62}}{16} =\frac{8\sqrt{62}}{16} =\frac{\sqrt{62}}{2} $

See similar equations:

| -21/7=3/x | | 12x+60=15x+6-2x-4 | | 3(u+3)=u=2(u-1)+3 | | 5x-13=3x+100 | | 7x-40+3x-5=3x-45 | | 46=2x+3x | | 2^x^2=8^2x-3 | | x/5-2=-37 | | 6+6b=2+6b+2b | | 5x-13=-5x | | (6x^2)/5=30 | | -5x–21=4x–3 | | -4.5x+7.5+9=-24.5 | | 13+-5x=-5x | | 15.98x+0.07=16.48x+0.08 | | 2^x*3^x=36 | | 2q+18=5q | | 2(x-16)=14 | | 4x+6=x+16 | | 15.98+0.07x=16.48+0.08x | | 2x+2x+2=3x+7+9 | | 40x+40=40=40x+20 | | 4x+12=-(8) | | 1/2q−2=3/2q | | 3x-3+3x=39 | | 5+2n=13-2n | | 10^-2x=1/10,000 | | 8y/11=5y-3 | | 12q−2=32q | | 2(x-1)-3(x+1)=x-3 | | 6,3*x=63 | | -40-8x=72 |

Equations solver categories